23 research outputs found

    Some applications of distributed signal processing

    Get PDF
    In this work we review some earlier distributed algorithms developed by the authors and collaborators, which are based on two different approaches, namely, distributed moment estimation and distributed stochastic approximations. We show applications of these algorithms on image compression, linear classification and stochastic optimal control. In all cases, the benefit of cooperation is clear: even when the nodes have access to small portions of the data, by exchanging their estimates, they achieve the same performance as that of a centralized architecture, which would gather all the data from all the nodes

    Location-aided Distributed Primary User Identification in a Cognitive Radio Scenario

    Get PDF
    We address a cognitive radio scenario, where a number of secondary users performs identification of which primary user, if any, is transmitting, in a distributed way and using limited location information. We propose two fully distributed algorithms: the first is a direct identification scheme, and in the other a distributed sub-optimal detection based on a simplified Neyman-Pearson energy detector precedes the identification scheme. Both algorithms are studied analytically in a realistic transmission scenario, and the advantage obtained by detection pre-processing is also verified via simulation. Finally, we give details of their fully distributed implementation via consensus averaging algorithms.Comment: Submitted to IEEE ICASSP201

    Distributed primary user identification from imprecise location information

    Get PDF
    We study a cognitive radio scenario in which the network of sec- ondary users wishes to identify which primary user, if any, is trans- mitting. To achieve this, the nodes will rely on some form of location information. In our previous work we proposed two fully distributed algorithms for this task, with and without a pre-detection step, using propagation parameters as the only source of location information. In a real distributed deployment, each node must estimate its own po- sition and/or propagation parameters. Hence, in this work we study the effect of uncertainty, or error in these estimates on the proposed distributed identification algorithms. We show that the pre-detection step significantly increases robustness against uncertainty in nodes' locations

    Distributed cognitive radio systems with temperature-interference constraints and overlay scheme

    Get PDF
    Cognitive radio represents a promising paradigm to further increase transmission rates in wireless networks, as well as to facilitate the deployment of self-organized networks such as femtocells. Within this framework, secondary users (SU) may exploit the channel under the premise to maintain the quality of service (QoS) on primary users (PU) above a certain level. To achieve this goal, we present a noncooperative game where SU maximize their transmission rates, and may act as well as relays of the PU in order to hold their perceived QoS above the given threshold. In the paper, we analyze the properties of the game within the theory of variational inequalities, and provide an algorithm that converges to one Nash Equilibrium of the game. Finally, we present some simulations and compare the algorithm with another method that does not consider SU acting as relays

    Distributed black-box optimization of nonconvex functions

    Get PDF
    We combine model-based methods and distributed stochastic approximation to propose a fully distributed algorithm for nonconvex optimization, with good empirical performance and convergence guarantees. Neither the expression of the objective nor its gradient are known. Instead, the objective is like a “black-box”, in which the agents input candidate solutions and evaluate the output. Without central coordination, the distributed algorithm naturally balances the computational load among the agents. This is especially relevant when many samples are needed (e.g., for high-dimensional objectives) or when evaluating each sample is costly. Numerical experiments over a difficult benchmark show that the networked agents match the performance of a centralized architecture, being able to approach the global optimum, while none of the individual noncooperative agents could by itself

    A new framework for solving dynamic scheduling games

    Get PDF
    Optimum scheduling is a key objective in many communications systems where different users have to share a common resource. Typically, centralized implementations are capable of guaranteeing certain fairness. In our approach, we follow a different path modeling the scheduling process as a dynamic infinite horizon discrete-time game. This formulation allows us to include any kind of dynamics and distributed implementations. Despite, these games are very difficult to solve, we are able to show that they are in fact dynamic potential games equivalent to a non-stationary multivariate optimum control problem. The dynamic control problem is solved via an augmented Bellman equation including time as an extra state

    Cooperative off-policy prediction of markov decision processes in adaptive networks

    Get PDF
    We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is suitable to learn off-policy even in large state spaces. We provide a mean-square-error performance analysis under constant step-sizes. The gain of cooperation in the form of more stability and less bias and variance in the prediction error, is illustrated in the context of a classical model. We show that the improvement in performance is especially significant when the behavior policy of the agents is different from the target policy under evaluation
    corecore